On the Approximation of Positive Functions by Power Series

ULRICH SCHMID

Mercedes-Benz AG, OD/vsk, 70567 Möhringen, Germany

Communicated by Doron S. Lubinsky

Received September 7, 1994; accepted November 26, 1994

The problem to be studied goes back to a question of Erdős and Kővari, concerning functions M(x), $x \in R_0^+$, which are positive and logarithmically convex in $\ln x$. The question to find necessary and sufficient conditions for the existence of a power series

$$N(x) = \sum c_n x^n$$
, $c_n \ge 0$ with $d_1 \le M(x)/N(x) \le d_2$, $x \ge 0$, where d_1 , $d_2 \in R^+$,

has been treated by several authors. The present paper concerns a generalization of this problem regarding positive functions h(x), $x \in R_0^+$. 30 1995 Academic Press, Inc.

1. Introduction

By Erdős and Kövari [1] the problem was posed to establish criteria which for a positive function M(x), $x \in R_0^+$, logarithmically convex in $\ln x$ (i.e., $F(t) = \ln M(e^t)$ convex in $t \in R$) ensure the existence of a power series $N(x) = \sum_{i} c_n x^n$, $c_n \ge 0$, with

$$d_1 \leq M(x)/N(x) \leq d_2, \qquad x \geq 0,$$

where $d_1, d_2 \in \mathbb{R}^+$ (notation $M \sim N$).

N(x) shall not represent a polynomial; i.e., M(x) satisfies the condition $x^n/M(x) \to 0$ for $x \to \infty$, $\forall n \in \mathbb{N}$ (M rapidly growing).

In [3, 6, 7] necessary and sufficient conditions were investigated. In [6] the author proved the following

THEOREM 1. Let $M: R_0^+ \to R^+$ be logarithmically convex in $\ln x$ and rapidly growing. With $F(t) = \ln M(e')$ and $F'_r(t) = \lim_{h \to 0, h > 0} (F(t+h) - F(t))/h$, $t \in R$, let the sequences a_n , \bar{a}_n be defined by

$$a_n = \inf\{t \in R, \ F'_r(t) \geqslant n\},\$$

0021-9045/95 \$12.00

Copyright © 1995 by Academic Press, Inc. All rights of reproduction in any form reserved. and

$$\bar{a}_n = F(a_n) - F(a_{n+1}) + (n+1)a_{n+1} - na_n, \quad \text{for} \quad n \in \mathbb{N}.$$

Then a necessary and sufficient condition for the existence of a power series $N(x) = \sum c_n x^n$, $c_n \ge 0$, with $M \sim N$ is that

$$F(\bar{a}_n) - F(a_n) - n(\bar{a}_n - a_n) \le c, \quad \forall n \in \mathbb{N},$$

for a constant $c \in \mathbb{R}^+$.

In the present paper, more generally for a given positive function h on R_0^+ rapidly growing, a necessary and sufficient condition for the existence of a power series $N(x) = \sum c_n x^n$, $c_n \ge 0$, with $h \sim N$ is established (Theorem 2). By this theorem it will be possible to extend certain properties of power series with non-negative coefficients to positive functions, for example to weight functions in "weighted approximation by polynomials" [2, 4, 5, 7]. Theorem 2 also yields a result on maximal power series (Theorem 3).

2. Power Series with Non-negative Coefficients

THEOREM 2. Let $h: R_0^+ \to R^+$ be rapidly growing. Set

$$u_n = \sup_{x \geqslant 0} x^n/h(x), \qquad n \in \mathbb{N}$$

and

$$P(x) = \max_{n \in \mathbb{N}} x^n / u_n, \qquad x \in R_0^+.$$

A necessary and sufficient condition for the existence of a power series $N(x) = \sum c_n x^n$, $c_n \ge 0$, with $h \sim N$ is the validity of

$$h(x)/P(x) \leqslant c, \qquad x \in R_0^+, \tag{1}$$

for some constant $c \in \mathbb{R}^+$.

Proof. We define $M(x) = \sup_{k \in K} k(x)$, $x \in R_0^+$, where $K = \{k : R_0^+ \to R^+, k(x) \text{ logarithmically convex in } \ln x \text{ and } k \leq h\}$. M(x) is the greatest minorant of h(x) which is logarithmically convex in $\ln x$. Further we define for $t \in R$, $F_1'(t) = \lim_{h \to 0, h < 0} (F(t+h) - F(t))/h$, $y_n(t) = nt - \ln u_n(F(t))$ and a_n according to the definition in Theorem 1), $z_n = \sup_{x \geq 0} x^n/M(x)$, $n \in \mathbb{N}$, and for $t \geq a_1$ we put $G(t) = \ln P(e^t)$.

By convexity of F we get

$$F'_1(a_n) \leqslant n \leqslant F'_r(a_n), \quad n \in \mathbb{N}.$$

This leads to the inequality

$$F(t) \geqslant F(a_n) + n(t - a_n), \quad \forall t \in R,$$

consequently

$$na_n - F(a_n) = \sup_{t \in R} (nt - F(t))$$

and

$$e^{na_n}/M(e^{a_n}) = \sup_{x \ge 0} x^n/M(x).$$
 (2)

For every $x \in R_0^+$ we have $x^n/z_n \le x^n/u_n \le M(x)$, and in connection with (2) it follows that $u_n = z_n$, i.e.,

$$y_n(t) = F(a_n) + n(t - a_n).$$

(The graph of y_n represents, for every $n \in \mathbb{N}$, the tangent to the graph of F at the point $(a_n, F(a_n))$ with slope n.) Now G can be written as

$$G(t) = \max_{n \in \mathbb{N}} y_n(t), \qquad t \geqslant a_1.$$

The asymptotic relation $M \sim P$ is equivalent to $\sup_{t \ge a_1} \{F(t) - G(t)\} < \infty$. By convexity of F we have

$$\max_{a_n \leqslant t \leqslant a_{n+1}} \{ F(t) - G(t) \} = F(\bar{a}_n) - G(\bar{a}_n) = F(\bar{a}_n) - y_n(\bar{a}_n)$$

$$= F(\bar{a}_n) - F(a_n) - n(\bar{a}_n - a_n), \qquad n \in \mathbb{N},$$

where

$$\bar{a}_n = \ln(u_{n+1}/u_n) = F(a_n) - F(a_{n+1}) + (n+1)a_{n+1} - na_n$$

represents, for every $n \in \mathbb{N}$, the *t*-coordinate of the intersection-point of y_n and y_{n+1} ; i.e., $M \sim P$ is equivalent to $\sup_{n \in \mathbb{N}} \{ F(\bar{a}_n) - F(a_n) - n(\bar{a}_n - a_n) \} < \infty$.

In view of $h(x) \ge M(x) \ge P(x)$ we can replace (1) by

$$(h \sim M) \wedge (M \sim P)$$

or, as shown above, by

$$(h \sim M) \wedge \sup_{n \in \mathbb{N}} \left\{ F(\bar{a}_n) - F(a_n) - n(\bar{a}_n - a_n) \right\} < \infty.$$

The assertion now follows by Theorem 1.

3. A MAXIMAL POWER SERIES WITH NON-NEGATIVE COEFFICIENTS

For a given function $h: R_0^+ \to R^+$ which does not satisfy (1), the question arises of whether there exists a maximal power series $Q(x) \le h(x)$, $x \ge 0$. Finally we can ask for the asymptotic growth of Q(x). In connection with Theorem 2 the following result will be formulated.

THEOREM 3. Let $h: R_0^+ \to R^+$ be rapidly growing. There always exists a power series $Q(x) = \sum d_n x^n$, $d_n \ge 0$, which satisfies $Q(x) \le h(x)$, $x \ge 0$, and is maximal in the following sense: Let $f(x) = \sum b_n x^n$, $b_n \ge 0$, be an arbitrary power series with $f(x) \le h(x)$, $x \ge 0$; then it is possible to find a constant $d \in R$ such that $f(x) \le dQ(x)$, $x \in R_0^+$.

Proof. First of all note that by definition of P(x) (in Theorem 2) we have $u_n = \sup_{x \ge 0} x^n/P(x)$; hence by Theorem 2 we obtain existence of a power series $Q(x) = \sum d_n x^n$, $d_n \ge 0$, with $Q \sim P$. Without loss of generality we may assume $Q(x) \le h(x)$. To prove the desired property of Q let $f(x) = \sum b_n x^n$, $b_n \ge 0$, be an arbitrary power series with $f(x) \le h(x)$, $x \in R_0^+$.

We define

$$r_n = \sup_{x \geqslant 0} x^n / f(x), \qquad n \in \mathbb{N},$$

and

$$B(x) = \max_{n \in \mathbb{N}} x^n / r_n, \qquad x \in R_0^+.$$

Again by Theorem 2 we get $f \sim B$.

Now we verify the inequality $B(x) \le P(x)$, $x \ge 0$. Let us assume the contrary,

$$B(s) > P(s)$$
 for a $s \in R_0^+$. (3)

Then there exists an integer $m \in \mathbb{N}$ with

$$s^m/r_m = B(s)$$
.

Hence, by (3), we obtain

$$s^m/r_m > P(s) \geqslant s^m/u_m$$

i.e., $u_m > r_m$, which is in contradiction to $f(x) \le h(x)$. Summarizing we obtain

$$f \sim B \leq P \sim Q$$
.

REFERENCES

- P. Erdős and T. Kővari, On the maximum modulus of entire functions, Acta Math. Acad. Sci. Hung. 7 (1956), 305-316.
- I. O. HACATRIAN, Weighted approximation of entire functions of zero degree by polynomials on the real axis, Dokl. Akad. Nauk. SSSR 145 (1962), 744-747.
- 3. J. CLUNIE AND T. KÖVARI, On integral functions having prescribed asymptotic growth 2, Canad. J. Math. 20 (1968), 7-20.
- 4. S. N. MERGELYAN, Weighted approximation by polynomials, Amer. Math. Soc. Transl. Ser. 2 10 (1958), 59-106.
- 5. N. I. AHIEZER, On the weighted approximation of continuous functions by polynomials on the entire number axis, *Amer. Math. Soc. Transl. Ser.* 2 22 (1962), 95–138.
- 6. U. Schmid, On power series with non-negative coefficients, *Complex Variables* 18 (1992), 187-192.
- 7. U. Schmid, "Gewichtete Approximation durch Polynome auf der reellen Achse," Thesis, Universität Stuttgart, 1988.